Estimation of the necessary number of points in Riemannian Voronoi

نویسندگان

  • Kensuke Onishi
  • Jin-ichi Itoh
چکیده

G. Leibon and D. Letscher showed that for general and sufficiently dense point set its Delaunay triangulation and Voronoi diagram in Riemannian manifold exist. They also proposed an algorithm to construct them for a given set. In this paper we estimate the necessary number of points for computing the Voronoi diagram in the manifold by using sectional curvature of the manifold. Moreover, we show how many Voronoi regions exist around a Voronoi region.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the facility location problem: One-round weighted Voronoi game

Voronoi game presents a simple geometric model for Competitive facility location problems with two players. Voronoi game is played by two players known as White and Black, they play in a continuous arena. In the one-round game, White starts game and places all his points in the arena then Black places her points. Then the arena is divided by distance between two players and the player with the ...

متن کامل

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

Umbilicity of (Space-Like) Submanifolds of Pseudo-Riemannian Space Forms

We study umbilic (space-like) submanifolds of pseudo-Riemannian space forms, then define totally semi-umbilic space-like submanifold of pseudo Euclidean space and relate this notion to umbilicity. Finally we give characterization of total semi-umbilicity for space-like submanifolds contained in pseudo sphere or pseudo hyperbolic space or the light cone.A pseudo-Riemannian submanifold M in (a...

متن کامل

Anisotropic Triangulations via Discrete Riemannian Voronoi Diagrams

The construction of anisotropic triangulations is desirable for various applications, such as the numerical solving of partial differential equations and the representation of surfaces in graphics. To solve this notoriously difficult problem in a practical way, we introduce the discrete Riemannian Voronoi diagram, a discrete structure that approximates the Riemannian Voronoi diagram. This struc...

متن کامل

Conformal Invariance of Voronoi Percolation

It is proved that in the Voronoi model for percolation in dimension 2 and 3, the crossing probabilities are asymptotically invariant under conformal change of metric. To deene Voronoi percolation on a manifold M , you need a measure , and a Riemannian metric ds. Points are scattered according to a Poisson point process on (M;), with some density. Each cell in the Voronoi tessellation determined...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003